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The problem considered is that of the behavior of a thin flexible plate of arbitrary shape 
under the influence of small transverse loading EQ and external boundary forces, the 
components of which are p and q along the x and ?J axes,respectively. In the case when 
the transverse loading is absent, p = PO and q = qo this problem has, as is well known, 

the trivial solution w = 0, P = l/s (poz? + qoo1/2) 

where w is the deflection of the plate and .F is a stress function. There exist one or 
several equilibrium forms of the plate near this solution for small deviations of p and 
q from PO and qo and for small transverse load. If p. and v,, are not critical, then there 

exists a single equilibrium form, which depends analytically on the parameters mentioned 
above. A method of determining the solution for this case in the form of a power series 
in a small parameter was proposed by Polubarinova-Kochina [l] and was later substanti- 

ated by Vorovich [2]. 
The case of critical values of PO and qo is more complicated (the phenomenon of 

buckling of a plate is well known). The first investigation for a circular plate under the 
condition of radial symmetry (p = 9) and without lateral load was carried out by Fried- 
richs and Stoker 133 who used a variational method to demonstrate the creation of a pair 

of new solutions as the critical value is exceeded. Quite recently, Berger and Fife [4] 

extended these results to the case of a plate of arbitrary shape without transverse load, 
under the assumption that the boundary forces depend on a single parameter. The solu- 

tion was obtained by making use of a topological theorem on bifurcations due to Krasno- 

sel’skii [5]. Much earlier, in 1955-1958, Vorovich [6] gave a qualitative analysis of the 
postbuckling behavior of plates and shells in an investigation of general problems of the 

nonlinear theory of shallow shells. In this study, he applied the theory of eigenvalues of 
nonlinear odd operators along with variational and topological methods. In addition, 

Vorovich investigated one of the variants of the analytic method of Liapunov and 
Schmidt p], and, as a concrete application, examined the problem of postbuckling beha- 
vior of a plate in the form of a circular annulus under small transverse loads and for 
various boundary conditions [7]. 

The method of [8] will be applied here to examine the problems described at the 
beginning of this paper. This differs somewhat from the method of Vorovich, although 
it is in essence very similar to it. Later it will be shown that if the values of PO, qo, e = 0 

are critical, then the vicinity of the point p = PO, q = $, e = 0 is divided in two parts 
by some surface (the difurcation surface), such that there exists a single small solution 
in one of these parts and three small solutions in the other. It is assumed here that zero 
is a simple eigenvalue of the corresponding linearized boundary value problem. 
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Approximate expressions are given for all the small solutions. 

1. Formulation of the problem rnd reduction to 8 8fngle ope- 
rator equation. Let the plate occupy the bounded region $2 with sufficiently 

smooth boundary l’. On the plate there act small normal loads and external boundary 
tractions having normal and shear components of the form 

olllr = p cc&l + q sins 0, o, jr = * (p - q) sin 20 

where p and q are the components of the external tractions in the t and y. directions, 
and 6 is the angle which the normal n makes with the z axis at the corresponding point 
of l’ . The nonlinear system of von Karman equations can then be written in the form 

A’P + f [w, w] = 0, x’d’w - [w, Fl -eQ=O WI 

[w, Fl = GP,,,J + woyllFrx - 2uwv 41, (W 

with the boundary conditions 
FI,=O, 

LJF 
anr 1 

=o 0.3) 

In addition, it is assumed that the plate is either rigidly clamped at its edge 

w IF = 0, 
aw 

anr I 
=o (1.4) 

or else is simply supported these, i.e. 

w Ir = 6, (i-5) 

Equations (1.1) - (1.5) are written in dimensionless form, with 

!7ld 
eQ=x, O<a<0.5 

where W is the deflection of the plate, Q, is the stress function, d is a characteristic 
diameter of the region Qi zr and yrare rectangular coordinates, q1 is the intensity of 

the normal loading, h is the thickness of the plate, E is Young’s modulus, u is Pois- 
son’s ratio, and p is the radius of curvature of the boundary at a point of r. 

The aim is to investigate the problem (1.1) - (1.5) in the neighborhood of the values 

of the parameters PO and qo. To do this, we set 

P=Po+hq=4?o+CL (M 

We now introduce the Banach spaces E, and Ea of two-dimensional columns of func- 
tions w (2, Y) 

’ (z* v) = F @., y) 
n 1 

the components of which, w and F , belong to the space of S. L. Sobolev W,‘(Q) (a > i) 
and satisfy the boundary conditions (1.4) or (1.5) and (1.3), respectively. 

Further, let El be the space of the columns 

the components of which belong to L=(Q) (a > 1). In these spaces the problem can be 
written in the form of a single functional equation if Eq. (1.6) is kept in mind 

Bu= ecp -I- kAu -I- pCu -I- Du (1.7) 
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where B, A and C are linear operators from El into El 

B= 
@A’ _ p&P (. . .)/**---~~a0 (. . .)/ax’ 

c _ - (1.8) 

Here cp is an element of El, and D(u) is a quadratic operator from Er into El gene- 
rated by the symmetric bilinear expression 

20 (~1, ~a) = I rw, FPl 4 [loa, Fll 

-[a, ml I ’ 
(1.9) 

The possibility of expressing the problem in the form of Eq. (1.7) in the above spaces 
follows from the a priori estimates for the equations of the theories of plates and shells 

established in papers by Vorovich [9] and Morozov [lo]. 

2. Continurtlon of the 8olutlon8. We shall first examine the simplest 

case in which the operator B has a bounded inverse B-l. We write Eq. 

xaA’w - pow PY - qow,, = 0, A’F = 0 WI 

with the boundary conditions (1.3) and (1.4)(or (1.5)). It follows from (2.1) that F s 0. 
Thus the entire investigation reduces to a study of the first equation of (2.1) with the 

boundary conditions (1.4) (or (1.5)). 
Let p. and q. be such that this problem does not lie on the spectrum. This will be the 

case, in particular, if PO > 0 and qo > 0. Physically, this means that the plate is being 
stretched by the external tractions applied to its edge. Under these conditions the ope- 

rator B-1 exists and is bounded. It follows from the theorem on implicit operators [lI] 

that there exists a unique small solution u = u(e, h, p) satisfying the condition 
U(0, 0,O) = 0. this solution can be found [12] in the form of a series in integral powers 
of the parameters e, A and p. 

Now let po and by be such that the problem (2.1) lies on the spectrum. Then it has 
a finite number of linearly independent solutions fl, fs, . . . . 1,. From the fact that the 

formally adjoint problem coincides with (2.1) it follows that tile condition 

D 
u (2, Y) Ii (z. Y) dz dy = 0 (i=i, 2, ,...n) (2.2) 

is necessary and sufficient for the solvability of the inhomogeneous equation Bu = v 
In order to investigate Eq. (1.7) we may now form the Liapunov-Schmidt bifurcation 

equation [12]. In this case it has the form of a system of n equations with the n un- 

knowns &, &, . . . . 6, and the parameters A, p and e 

L(*l (J&, G ,..., e,,e, 1, .p) = 0, (8 = I,2 ,..., n) (2.9) 

The study of this system in general form presents great difficulties. The presence of 
more than one parameter means that instead of a point of bifurcation as in the case of 
a single parameter, surfaces (or curves) of difurcation appear. These split the neighbor- 
hood of the point e = p = 1 = 0 into parts; the crossing of these surfaces correspond 

to the creation (or disappearance) of new pairs of solutions. 

8. Investfgrtion of the buckling phenomrnon for n = 1. We shall 
now concentrate on the case n = i. Here the equation of bifurcation (2.3) has the form 
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f+i+k>o I=1 f+j+ka 

(the scripts indicate what powers of e, 1, p and & the coefficient multiplies). 
Let us calculate the leading coefficients. Arguing in the same way as in Section 4.3 

of the paper [12], and using (2.2) for PI = 1, we obtain 

@Z&000= 
cs Qidzdv, ss 

ftdxdy= 1 (3.2) 
h n 

where f is the nontrivial solution of the problem (2.1) satisfying the second condition 
in (3.2). The coefficients &la, = hla = 0, since the equation has no constant terms 

containing L and p 
01 = Lo101= 

n 
-$ fd=dy=-\j(Ay dzdy <O 

In exactly the same way 
‘ri aY (3.3) 

a.2 z J&,, = - af 9 
SK > az dzdy<O 
n 

(3.4) 

To find the first nonzero coefficient hr (I >i 2) we use the method proposed in 
[12]. We introduce the operator B1 defined for u E & by Formula 

a% a%c 

Blu = 
A’w - PO ayr --9o~-l- ss wf ds dff k Y) 

n 
A2F 

(3.5) 

According to the generalized Schmidt lemma, the operator B1 has a bounded inverse 
operator. We examine Eq. 

B,u = D(u) + E CP,,CPI = jj;\ (3.6 ) 

where E is an arbitrary small parameter. The solution of Eq. (3.6) can be found in the 

form of an infinite series which converges with respect to the metric of U$) (Q) 

u(E)=UIE+UnC+UaC+.~. (3.7) 

The coefficients hl (I > 2) can now be calculated from the relations 

2 &ooiS’ = 5s 4 (u (f)) f dz dy (3.8) 
1=2 n 

where D,. denotes the first component of D. Substituting (3.7) into (3.8) we obtain a 
system bf recurrence relations which determine ui (i = 1,2,...) 

Blul = cp,, Blur = Dh), B,us = 20 (~1, US,... (3.9) 

By virtue of (3.5) and (3.2), we find from Eq. (3.9) that IQ = W,‘To firiU us we first 
compute Du, = DqlL- Using (1.9) we obtain 

,D (4 - -LOv. Al 
It follows from this by virtue of (3.8) that ha = 0. We shall now show that 

’ (Is~L@JO*=- 
s 

(A Ft)a dz dy < 0 (3.10) 
P 

where Fs is a certain function which will be defined below. We then find that 
0 

u;= 
u u Fl 

where Fa is the solution of the boundary value problem 
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Using (1.9), we conclude that 
20 (~2) = 

Now by applying (3.8) and (3.11) and integrating by parts, we obtain 

.as= 2 
ss 

D1(ul,ua) fdxdy= *[f, Fa] f dxdy= 
SI ss 

Fa[f, f]dxdy=- 2 
ss 

(AFz)2dxdy 

L1 b1 L1 

It follows from (3.10) that for all sufficiently small a, J. and p , the problem has pre- 
cisely three complex solutions. We construct approximately the surface of bifurcation 

wh,ich, as will be clear later, splits the vicinity of the point E = h = p = 0 into two 
parts, in one of which there exists one solution, and in the other three. Two of the latter 

merge on the bifurcation surface. 
The approximate equation of bifurcation has the form 

al-$ + a,7LE + a2p4 + asE3 + . . . = 0 (3.12) 

4. The raymptotlc behavior of :mrll #olution8. We first examine 
the simplest case in which Q E 0. Then Lim = 0 (i = 1,2,...), and the bifurcation 
equation has 5 as a factor ; 5 = 0 corresponds to the trivial solution of the problem. 
Cancelling t, we arrive at Eq. 

a& + azp + a& + . . . = 0 (4.1) 

It is clear from this that the neighborhood of the point A = p = 0 is divided into 

two parts by the bifurcation curve (the approximate equation of which is ulh + asp= 0). 
Above the curve, Eq. (4.1) has no small solutions, but below it there are precisely two 

solutions. To the first approximation these solutions are given by Eqs. 

El,2 = f [ - aa-‘(a& + a2p)]‘l’ (4.2) 

In this case, the problem (1.1) - (1.5) has, in addition to the trivial solution. two 
small nontrivial solutions which may be represented asymptotically in the form 

4,2 = E1,2(& P) f(z, Y), F,,a = 0 (4.3) 
We remark that the special case p = q (i.e. h = cc) was considered in [43. where it 

was proved by a topological method that fwo new solutions arise as the critical value is 
crossed. We supplement these results by noting that in this case the solution can be 
found [12] in the form of a convergent series in powers of (- h)“‘, and that the first 
approxim’ation is obtained from Eq. (4.2) with p = h. Exactly the same conclusions can 
be drawn for the case in which p and p are connected by some relationship. 

Let us now consider the case when Q f 0. We shall limit ourselves here to values of 
Q such that a0 # 0. We can conclude from Eq.(3.12) that the neighborhood of E = k = 

= p =0 is divided into two parts by the surface of bifurcation. In one of these parts 
there is a single solution; in the other there are three. In order to construct this surface 

approximately we form the eliminant R(E, A, JA) of the polynomials 

P(a. h, P, 6) = aaa + a&c + QPE + as!?, aPf& = a& + nap -I- 3asi’ 

The equation of the discriminant surface, which coincides with the bifurcation surface 

R(a, A, P) = 0 has the form 4(a,l + alp)3 + 27ao”asC = 0 (4.4) 

and is a cylindrical surface with a semicubic parabola as directrix. 
We remark that in this case all the solutions of the problem are approximately repre- 
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sentable by Expressions 

where &, is a solution of the cubic equation 

JY% 1, P, f) = 0 
Let us examine the special case p = kq (i.e. h = kp). in greater detail. Then 

PC% A, P, f) = aps .t bp.E + sY’ = 0, b = u,k + as (4.5) 

(We assume that if k = 00, b = a1 and in the succeeding calculations p must be 
replaced by b.) To invesrigate.the solution for 5 asymptotically it is convenient to trans- 
form from the two small parameters e and p in Eq. (4.5) to a single parameter which 
takes on arbitrary real values. This can be done by introducing the new variables 9 and 

‘1 according to Eqs. 
6 = bp (a#%, lb (4.6) 

We then have from Eq. (4.5) 
1$6q+‘IS=0 (4.71 

The point A (-s/s(Z)“‘, */s (4)“‘) of the curve representing the function 9 = ~(6) is 
a branch point. There exist three single-valued branches! q = ~,(6), r) = Q+ (6) and 

rl=q_(B).The last two are defined to the left of the point A and merge at that point. 
By defining %(6), q_(6) and s+(6) with the requisite degree of at&racy from (4. ‘7). it 

is then possible with the aid of Eqs. (4.6) and (4.3) to find the small solutions of the 

problem (1.1) -Q. 5). 
We shall give without derivation. for example, the asymptotic behavior of Tlo, r)_ and 

?+ for 8 + & 00 and for 8 3 A - O.The first case corresponds the asymptotic behavior 

of the associated values of E away from a small strip bordering the curve of bifurcation, 
and the second corresponds to the asymptotic behavior near the bifurcation curve. From 

(4.6) and (4.7) we have 

In exactly the sarn~~~,~o~ iL e)“y 

q+ (0) - (-- eP, q_ (0) - - i/z8 

-V - 00 we find from (4.7) 

* ie) - - (-- e)“*, q+ (e) - c-- efk 1~ (e) - - we 
Applying (4.61, we obtain for pe”/* -, - oo 

We now construct the asymptotic solution near the curve of bifurcation. We carry out 

the transformation of variables 
6 = _ 3.2-a/a - ‘t, tl = 2-U + 4 

It is not difficult to obtain from (4.7) that 

o - & (l/s I)*‘* for r -, 0, (I * 0 
Ir follows from this that 

Q (6)N21’fa f[-$2-*h -6]“8 for 6+ -3*2+ 

Finally, by virtue of (4.6) we obtain 

t, (e, p) - (a* /oaf’* (2J’Df [-3=2”‘D-b (a&%~‘*]“~) 

s (a1 )I) - (daoG/ as) % and pa-% + _‘32$-% a’/Q,“Df,-l 

6, Exrmple. A circular, aymmetricrlly lordad plate. Transforming 
fo plane polar coordinates (r, 6) and carrying out the following transformation of varia- 

bles in(l.l) - (1.4): 
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T 

dw 
-=6 

1 dF 
dr ’ ix=P+$. F Q (4 ids = 91 (d , 

0 
we obtain the equations of a circular plate in the case of radial’symmetry 

A~--‘/,6P=0, xaA6 + ~,,a = --h(r)-MC&l, 

d 1 d 
A(...)=--r~‘;.yg-r(...), O<r<i 

with the boundary conditions 

(5.1) 

is / &a < 00, I$/ rlr=s, < (*)$(I) = 0, e(i) - 0 (5.2) 

Here we take the space of two-dimensional columns of functions having elements in 

the space Cs(O,1) which satisfy the boundary conditions (5.2) as our space El .For El 

we take the space Co (0,i). 
With the aid of matrix notations analogous to those given in Section 1, the problem is 

rewritten in the form of Eq. (1.7). The critical values of the parameter pa and the cor- 
responding eigenfunctions are determined from the boundary value problem 

g$t f$ -(Po++)i3=0. 6 (1) = 6 (0) = 0 (5.3) 

The problem (5.3) has a countable set of negative eigenvalues pok = - ab’, where 
the oh’s are the positive roots of the Bessel function .r,(r). All the. pok are simple eigen. 

values and correspond to the eigenfunctions J&q,r). The coefficients of the equation of 
bifurcation (4.1) may be computed as follows (A = p) 

a0 = 5 QIJI (ak r) dr, ” J?(akr)dr<O u1= 0s = - - 

i-1 [($fy+f] dp<O 

s 

0 

;a’= r \$-\ Jl~(r)sdr) 
t 0 

Exactly the same-conclusions are obtained as in Section 4. 
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We consider a differential equation (which finds practical applications), containing a 
function with finite discontinuities, and its derivative. Since the equation is not defined 

on the lines of discontinuity, additional definitions are constructed for various cases. 

The supplementary definition schemes supply the information needed for a complete 
qualitative analysis of the system. Examples of such analysis are given for two different 

characteristics corresponding to two differing cases of supplementary definition. 

Equation ‘p.. + 2h[i 
- bF’(cp)l cp’ + wp) = Q, m + w = WP) (0 

encountered in practice (*) was studied often (see e. g. [l] and @]) for the case when 
F(v) has continuous characteristics. 

Here we propose a method of investigation of (1). when the characteristic exhibits 
finite discontinuities. 

Let p = v,, be one of the points of discontinuity. The system 

cp’ = y, y’ = P - F(q) - 2h[l - bF’ (cp)ly (2) 

equivalent to (1) is not defined on the line cp = v,,. Therefore, when the representative 

*) When b > 9.) Eq. (1) represents the equation of the phase automatic frequency con- 
trol (aft) with an integrating filter with delay ; when b < 0 , Eq. (1) is the equation of 
automatic control with a proportional integrating filter without delay [l] . 


